RAPID COMMUNICATIONS

Resummed Green-Kubo relations for a fluctuating fluid-particle model

PHYSICAL REVIEW E 70, 035701R) (2004

T. Ihle,! E. Tizel** and D. M. Krolf
Ynstitut fiir Computeranwendungen, Universitat Stuttgart Pfaffenwaldring 27, 70569 Stuttgart, Germany
23chool of Physics and Astronomy, 116 Church Street SE, University of Minnesota, Minneapolis, Minnesota 55455, USA
3Supercomputing Institute, University of Minnesota, 599 Walter Library, 117 Pleasant Street S.E., Minneapolis, Minnesota 55455, USA
(Received 13 April 2004; published 29 September 3004

A recently introduced stochastic model for fluid flow can be made Galilean invariant by introducing a
random shift of the computational grid before collisions. This grid shifting procedure accelerates momentum
transfer between cells and leads to a collisional contribution to transport coefficients. By resumming the
Green-Kubo relations derived in a previous paper, it is shown that this collisional contribution to the transport
coefficients can be determined exactly. The resummed Green-Kubo relations also show that there are no mixed
kinetic-collisional contributions to the transport coefficients. The leading correlation corrections to the trans-
port coefficients are discussed, and explicit expressions for the transport coefficients are presented and com-
pared with simulation data.
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A recently introduced stochastic model for fluid flg®y;2] evaluation of the collisional contribution to the transport co-
with efficient multiparticle interactions—which we will call efficients. Furthermore, it is shown that there are only pure
Stochastic Rotation DynamiqSRD)—is a promising tool  kinetic and collision contributions to the transport coeffi-
for the coarse-grained modeling of a fluctuating solvent, parcients, with no cross terms.
ticularly for colloidal [3] and polymer suspensiorig—g]. In the SRD algorithm, the fluid is modeled by particles
SRD can be thought of as a “hydrodynamic heat bath,” theyith continuous spatial coordinatest) and velocitiess;(t).

details of which are not fully resolved, but which provides e system is coarse grained into the cells of a regular lattice
the correct hydrodynamic interactions between embeddeglii, ng restriction on the number of particles in a cell. The

particles. In addition to its numerical advantages, its simplic, o\ tion of the system consists of two steps: streaming and
ity makes it possible to obtain analytic expressions for the

> . . collision. In the streaming step, the coordinate of each par-
transport coefficients which are valid for both large andtic:Ie is incremented by its displacement during the time ste
small mean free paths, something which is very difficult to y P 9 P,

do for other mesoscale particle-based methods. 7. Collisions are modeled by a simultaneous stochastic rota-

In its original form[1,2], the SRD algorithm was not Gal- tion of the relgtlve veIOC|t|e$reIat|v§ to Fhe mean velocny.of
ilean invariant at low temperatures, where the mean free pat€ Particles in a cejlof everyparticle in each cell. As dis-

X is smaller than the cell siza. However, as was shown in Cussed in Refs[7,8], a random shift of the particle coordi-
Refs.[7,8], Galilean invariance can be restored by introduc-nates before the collision step is required to ensure Galilean
ing a random shift of the computational grid before everyinvariance. All particles are shifted by tisamerandom vec-
multiparticle interaction. A discrete-time projection operatortor with components in the intervét-a/2,a/2] before the
technigue was then usé¢#] to derive the Green-Kub@GK)  collision step. There is a great deal of freedom in how the
relations for the model's transport coefficients. Using theseotation step is implemented, and any stochastic rotation ma-
results, explicit expressions for the transport coefficientdrix consistent with detailed balance can be used. In two
were derived in an accompanying pap@r. In particular, it  dimensions, the stochastic rotation matrix is typically taken
was shown that the grid shifting procedure accelerates mae be a rotation by an angleat with probability 1/2[1]. In
mentum transfer between cells and leads to a collisional corthree dimensions, two collision rules, denoted by models A
tribution to the transport coefficients. However, the resultingand B in Ref.[11], have been considered. In model[4],
expressions, while accurate, were only approximate, since @ne performs rotations by an angleabout a randomly cho-
was not possible to sum up in any controlled fashion all thesen axis. In model B11], rotations are performed about one
terms in the GK relations. Subsequently, Kikuehial. [10] of three orthogonal rotation axes of a Cartesian coordinate
used a nonequilibrium approach to derive expressions for theystem. At each collision step, one of these three axes is
shear viscosity which differed slightly from those derived inchosen at random, and a rotation by an angteis then

[9]. Furthermore, while their approach yielded only two— performed, where the sign is chosen at random.

pure kinetic and collision—contributions to the viscosity, the  Explicit GK relations for the transport coefficients of the
analysis of the GK formalism presented in Ri8,9] sug- SRD algorithm were derived in Re]. In particular, it was
gested that there are additional “mixed” contributions. Theseshown that the shear viscosityis given by[9,11]
discrepancies led us to reexamine the GK approach.

In this paper we show that it is possible to resum the time T
series in the GK relation in such a way as to eliminate all v
dependence on the particles’ space-fixed cell coordinates.

This leads to dramatic simplifications and allows the exacwhere

by kBTgo 0y(0)ay(N7), (1)
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1 s Using these results ifl), the viscosity can be written as
Ty(N7) = = ?2,- [vx(NDAE,(N7) + Av(NDAE, (7], V= v+ Urgp, With
2
with  Ag(nD=&((N+DD-£(m), AEND=&((n+1)7) Yin= kBTnEO”21<vxl(0)vyl(0)vx1(“T>vy1(”7>> (6)
—fs((n+ 1)7), and Av,j(n7) =v,i((n+ 1) 7) —v,;(n7). &(n7) is
the cell coordinate of particlpat timenr, while £ is its cell
coordinate in théstochastically shifted frame. Tﬁe prime on
the sum indicates that the=0 term has the relative weight
1/2. The sum in Eq(2) runs over allN particles of the
system. Here and in the following we have set the particle Vrot = 2NkBTI121{<UIX(O)va(O)><B|y 0)B;,(0))
mass equal to one.
The straightforward evaluation of the GK relations pre- + 2(vix(0)vj(7))Biy(0) By (7))} (7)

sented in Ref[9] leads to three contributions to the transport

coefficients, which were called the kinetic, rotational, andAssuming molecular chaos, it is straightforward to evaluate
mixed terms. For a large mean free patt; rykgT>a, the  the kinetic contribution to the shear viscosity. If, in addition,
assumption of molecular chaos is valid, and the kinetic conit is assumed that the number of particles in any cell is Pois-
tribution could be determined explicitly. For mean free pathsson distributed at each time step, with an average nutiber
smaller than the cell size, however, there are finite cell siz®f particles per cell, and average over the number of particles
corrections, and it was not possible to sum these contribun a cell[10], one finds

tions in a controlled fashion. The origin of the problem was

the explicit appearance of the cell coordinaAigin the stress * KaT 7 M

correlation functions. V20 = kg Tr>, 'Ge(nT) = = Y. -1,
In fact, the appearance 4f is troubling, since one would n=0 2 [(M-1+eMsirX(a)

not expect this to be the case if the cell shifting procedure (8)

really does restore Galilean invariance. The key to resolving
this dilemma is to realize that a proper resummation of the,, o dimensions, where
GK relations removes this dependence. In particular, by can-
celing é-dependent terms in successive contributions to the

—Ki —Ki 2
time series in Eq(1) and using stationarity12], it can be Ge(n7) = (03y/(0) 0y (n7))o/N(kgT)

shown that transport coefficients are given by the_same GK =[1-2 sif(a)(M -1 +e™M)/M]". (9)
relations, but with the stress tensary(n7)= 'y”(nr)
+0%y(n7), with The indexC indicates that molecular chaos was assumed
ki when performing the averages. The corresponding result for
y(N7) = E vy (N7), ) model A in three dimensions is
and D ksTT 5M

Pin = 2 |(M-1+¢€ M)[Z cosa) — 005{20’)]

_rO 1
t(m-) ;2;, Bj,(nnvjx(n7), (4) 10)

where Bj4(n7)=&4((n+1)7) - &4(n7) - 1j4(n7). Note that
the new stress tensor does not depend,otie space-fixed
cell coordinates of the particles. It can be shojg], and
has been verified numerically, théd;,)=0 and that all cor-
relations of theB fields with the particle velocities in the
stress correlation functions factorize. Furthermore,

(see also Refd11,12 ).

Equations(8) and (10) are the same results one would
obtain in the Chapman-Enskog approximatifij. For a
small mean free path, however, there are significant contri-
butions toy;, that are neglected in this approximation. They
arise from correlations between particles which are in the

a2 same(shifted cell at more than one time step. Figure 1 con-
(Bia(N7)Bj5(mM7)) = aﬁ(l +01)[200m = Snme1 = Sam-als tains a plot of theG(n7) =(0%'(0) oy (n7)/N(kgT)?, in two
dimensions fora=90". The bullets are the resulB:(n7)

(5) given in (9), and the open squares are simulation data for
so that theB's are uncorrelated for time lags greater than one\/a=1; the agreement shows that for this value of the mean
time step. These relations imply that there are only two—dree path, Eq.(8) provides an excellent approximation for
pure kinetic and a pure rotational—contributions to the trans#in- On the other hand, data obtained fafa=0.01 () ex-
port coefficients. Relatioit5) is of central importance, be- hibit much larger correlations farr=2. Figure 2 contains a
cause it contains all the geometrical features of the grid thaplot of the relative differencefG(27)=G(27)—-G¢(27) as a
contribute to the transport coefficients, and is independent diunction of the mean free path. While it is rather difficult to
specific collision rules and particle properties. evaluate these corrections analytically for genirale have
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FIG. 1. G(n7as a function of time step fax/a=0.01 () and 0.08—r—— T T T T T
N a=1.0(0). The bullets(+) are the resulG(n7) given in Eq.(9). r (b)
Averages were taken over 100 000 iterations and five different ran- 0.06- N 7
dom number seeds. Parametdrsa=64, M=5, anda=90°. 004' 1

calculatedsG(27) in the A — 0 limit. The results of this cal-
culation, which are shown in Fig. 2, are in excellent agree-
ment with the numerical results.

There are corrections of this type at smella for all the 0__ |
transport coefficients, and it is important to note that they 0.0k i
provide a particularly large contribution to the bare self- I ]

diffusion coefficien6,9,13. The effect of these correlations 0.04

on the value of the viscosity are less significant and only

visible at intermediate mean free path, since they vanish for

|arge)\ and are Sma” Compared to the d0m|nant C0”|5|Ona| FIG. 3. Simulation results for the normalized rotational contri-

contribution for\<a. For A\/a=0.4, the correlations at bution to (a) the kinematic viscosityy,,;7/a%, and(b) the thermal

=2 make an additional contribution of approximately 129 todiffusivity, Dr.ot7/a% as a function of the collision angle. The

the total viscosity. m_rcles(-) are the diagonal, t_he §quar(ﬂ) the off_dlagon_al, an_d the
The rotational contribution to the viscosity is easy to triangles(A) the total contribution to the rotational viscosity and

evaluate, since, as can be seen from @y.only stress cor- thermal diffusivity. The solid.lines are the theoretical pre.dictio.ns.

relation functions at equal time and for a time lag of one timeThe data were obtained by time averaging over 360 000 iterations.

. . e . Parameterst./a=16,\/a=0.1,M=3, andr=1.
step are required. Another simplifying feature is that because
of momentum conservation, the diagoabm i=j) and off-

PR SR NV RPN NPU R NP NPR PR S
30 45 60 75 %g 105 120 135 150

diagonal (from i #j) contributions tov,y in (7) obey the _a@ (M —1+9_M) _
relation piagenal= _p,off-diagonal - ysing this result and rela- Vrot = 6d7< M [1- cogal] (19
tion (5), and averaging over the number of particles in a cell,
one obtaing12] for all the collision models we considergthe standard
N model ind=2 and both models A and B in three dimensions
¥ | (3D) [11]]. Equation(11) agrees with the result of Kikucleit
024 al. [10] obtained using a different nonequilibrium approach
’ in shear flow, but deviates slightly for small from the
result given in Refs[9,11]. Result(11) is compared with
30-13* simulation data for the rotational contributation to the viscos-
(:2/ ity in Fig. 3(a).

The GK relation for the thermal diffusivity), derived in
Refs.[8,9] can be resummed in a similar fashion. In particu-
lar, it can then be shown th@it=Dr+ in+ D1 or. D1kin Was
calculated in two dimension@D) in Ref.[9] and in 3D in
0 . [11], neglecting fluctuations in the number of particles in a

0 0.4 0.8 Y 12 1.6 2 cell. As for the viscosity, it is straightforard to include par-
a ticle number fluctuations by averaging the contributions to
FIG. 2. 8G(27) as a function of\/a for rotation anglesr=60°  the heat-flux correlation functions over the number of par-

(¢), 90° (0J), and 120 (»). The asteriskg*) are the theoretical ticles in a cell; the r_ESU|(tjii£‘90n2|xpreS%if(]?_giaV\g”albe given else-
values for\/a=0. Time averages over 400 000 iterations for five Where[12]. The relationD7i5""=~2D7 ;"*9°", which fol-
different random number seeds were used to obtain the data. Paratews from energy conservation, can be used to show that the

eters:L/a=64 andM=5. rotational contribution to the thermal diffusivity is
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a2 1 _M Mex_1 underlying algorithm. In addition, the current approach jus-
DT,rotzm_M € 1+f X dx tifies in detail several assumptions used in the nonequilib-
0 rium calculation of Kikuchiet al.[10], which led them to the

X[1-coda)] same, correct results for the shear viscosity derived here us-

) ing GK relations. An advantage of the current approach is
~ a—l(l - i)[l - coga)] (12)  thatit can be used to analyze the transport coefficients of the

3(d+2)7™™ M longitudinal modes, namely the bulk viscosity and thermal

diffusivity, which are hard to calculate in a nonequilibrium
approach[13]. It can also be used to show that the bulk
viscosity is equal to zerf9,12].

to leading order for largeM. Note that in contrast to the
viscosity, the rotational contribution to the thermal diffusiv-
ity is O(1/M), so that the corrections tb at small\/a
arising from correlated collisons are more important than for We thank J. Yeomans for helpful discussions which initi-
the viscosity. Simulation results f@+ , are compared with ated this reexamination of the GK approach. We thank her
Eqg. (12) in Fig. 3b). and C.M. Pooley for making their unpublished notes avail-

It is now clear that the random shift procedure introducedable to us. Support from the National Science Foundation
in Refs.[7,8] not only restores Galilean invariance, but alsounder Grant Nos. DMR-0083219 and DMR-0328468 and the
enables an exact evaluation of the collisional contribution tadonors of The Petroleum Research Fund, administered by the
the transport coefficients and clarifies several aspects of th&CS, is gratefully acknowledged.
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