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A recently introduced stochastic model for fluid flow can be made Galilean invariant by introducing a
random shift of the computational grid before collisions. This grid shifting procedure accelerates momentum
transfer between cells and leads to a collisional contribution to transport coefficients. By resumming the
Green-Kubo relations derived in a previous paper, it is shown that this collisional contribution to the transport
coefficients can be determined exactly. The resummed Green-Kubo relations also show that there are no mixed
kinetic-collisional contributions to the transport coefficients. The leading correlation corrections to the trans-
port coefficients are discussed, and explicit expressions for the transport coefficients are presented and com-
pared with simulation data.
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A recently introduced stochastic model for fluid flow[1,2]
with efficient multiparticle interactions—which we will call
Stochastic Rotation Dynamics(SRD)—is a promising tool
for the coarse-grained modeling of a fluctuating solvent, par-
ticularly for colloidal [3] and polymer suspensions[4–6].
SRD can be thought of as a “hydrodynamic heat bath,” the
details of which are not fully resolved, but which provides
the correct hydrodynamic interactions between embedded
particles. In addition to its numerical advantages, its simplic-
ity makes it possible to obtain analytic expressions for the
transport coefficients which are valid for both large and
small mean free paths, something which is very difficult to
do for other mesoscale particle-based methods.

In its original form[1,2], the SRD algorithm was not Gal-
ilean invariant at low temperatures, where the mean free path
l is smaller than the cell sizea. However, as was shown in
Refs.[7,8], Galilean invariance can be restored by introduc-
ing a random shift of the computational grid before every
multiparticle interaction. A discrete-time projection operator
technique was then used[8] to derive the Green-Kubo(GK)
relations for the model’s transport coefficients. Using these
results, explicit expressions for the transport coefficients
were derived in an accompanying paper[9]. In particular, it
was shown that the grid shifting procedure accelerates mo-
mentum transfer between cells and leads to a collisional con-
tribution to the transport coefficients. However, the resulting
expressions, while accurate, were only approximate, since it
was not possible to sum up in any controlled fashion all the
terms in the GK relations. Subsequently, Kikuchiet al. [10]
used a nonequilibrium approach to derive expressions for the
shear viscosity which differed slightly from those derived in
[9]. Furthermore, while their approach yielded only two—
pure kinetic and collision—contributions to the viscosity, the
analysis of the GK formalism presented in Refs.[8,9] sug-
gested that there are additional “mixed” contributions. These
discrepancies led us to reexamine the GK approach.

In this paper we show that it is possible to resum the time
series in the GK relation in such a way as to eliminate all
dependence on the particles’ space-fixed cell coordinates.
This leads to dramatic simplifications and allows the exact

evaluation of the collisional contribution to the transport co-
efficients. Furthermore, it is shown that there are only pure
kinetic and collision contributions to the transport coeffi-
cients, with no cross terms.

In the SRD algorithm, the fluid is modeled by particles
with continuous spatial coordinatesr istd and velocitiesvistd.
The system is coarse grained into the cells of a regular lattice
with no restriction on the number of particles in a cell. The
evolution of the system consists of two steps: streaming and
collision. In the streaming step, the coordinate of each par-
ticle is incremented by its displacement during the time step,
t. Collisions are modeled by a simultaneous stochastic rota-
tion of the relative velocities(relative to the mean velocity of
the particles in a cell) of everyparticle in each cell. As dis-
cussed in Refs.[7,8], a random shift of the particle coordi-
nates before the collision step is required to ensure Galilean
invariance. All particles are shifted by thesamerandom vec-
tor with components in the intervalf−a/2 ,a/2g before the
collision step. There is a great deal of freedom in how the
rotation step is implemented, and any stochastic rotation ma-
trix consistent with detailed balance can be used. In two
dimensions, the stochastic rotation matrix is typically taken
to be a rotation by an angle ±a, with probability 1/2[1]. In
three dimensions, two collision rules, denoted by models A
and B in Ref.[11], have been considered. In model A[2],
one performs rotations by an anglea about a randomly cho-
sen axis. In model B[11], rotations are performed about one
of three orthogonal rotation axes of a Cartesian coordinate
system. At each collision step, one of these three axes is
chosen at random, and a rotation by an angle ±a is then
performed, where the sign is chosen at random.

Explicit GK relations for the transport coefficients of the
SRD algorithm were derived in Ref.[8]. In particular, it was
shown that the shear viscosityn is given by[9,11]

n =
t

N kBT
o
n=0

`

8ksxys0dsxysntdl, s1d

where
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sxysntd = −
1

t
o

j

fv jxsntdDj jysntd + Dv jxsntdDj jy
s sntdg,

s2d

with Dj jsntd=j j(sn+1dt)−j jsntd, Dj j
s(ntd=j j(sn+1dt)

−j j
s(sn+1dt), and Dvxjsntd=vxj(sn+1dt)−vxjsntd. j jsntd is

the cell coordinate of particlej at timent, while j j
s is its cell

coordinate in the(stochastically) shifted frame. The prime on
the sum indicates that thet=0 term has the relative weight
1/2. The sum in Eq.(2) runs over allN particles of the
system. Here and in the following we have set the particle
mass equal to one.

The straightforward evaluation of the GK relations pre-
sented in Ref.[9] leads to three contributions to the transport
coefficients, which were called the kinetic, rotational, and
mixed terms. For a large mean free path,l=tÎkBT@a, the
assumption of molecular chaos is valid, and the kinetic con-
tribution could be determined explicitly. For mean free paths
smaller than the cell size, however, there are finite cell size
corrections, and it was not possible to sum these contribu-
tions in a controlled fashion. The origin of the problem was
the explicit appearance of the cell coordinateDj in the stress
correlation functions.

In fact, the appearance ofDj is troubling, since one would
not expect this to be the case if the cell shifting procedure
really does restore Galilean invariance. The key to resolving
this dilemma is to realize that a proper resummation of the
GK relations removes this dependence. In particular, by can-
celing j-dependent terms in successive contributions to the
time series in Eq.(1) and using stationarity[12], it can be
shown that transport coefficients are given by the same GK
relations, but with the stress tensorsxysntd; s̄xy

kinsntd
+s̄xy

rotsntd, with

s̄xy
kinsntd = − o

j
v jxsntdv jysntd, s3d

and

s̄xy
rotsntd = −

1

t
o

j

Bjysntdv jxsntd, s4d

where Bjbsntd=j jb
s (sn+1dt)−j jb

s sntd−tv jbsntd. Note that
the new stress tensor does not depend onj, the space-fixed
cell coordinates of the particles. It can be shown[12], and
has been verified numerically, thatkBial=0 and that all cor-
relations of theB fields with the particle velocities in the
stress correlation functions factorize. Furthermore,

kBiasntdBjbsmtdl =
a2

12
dabs1 + di jdf2dn,m − dn,m+1 − dn,m−1g,

s5d

so that theB’s are uncorrelated for time lags greater than one
time step. These relations imply that there are only two—a
pure kinetic and a pure rotational—contributions to the trans-
port coefficients. Relation(5) is of central importance, be-
cause it contains all the geometrical features of the grid that
contribute to the transport coefficients, and is independent of
specific collision rules and particle properties.

Using these results in(1), the viscosity can be written as
n=nkin+nrot, with

nkin =
t

N kBT
o
n=0

`

o
i,j=1

N

kvxis0dvyis0dvxjsntdvyjsntdl s6d

and

nrot =
t

2NkBT
o
i,j=1

N

hkvixs0dv jxs0dlkBiys0dBjys0dl

+ 2kvixs0dv jxstdlkBiys0dBjystdlj. s7d

Assuming molecular chaos, it is straightforward to evaluate
the kinetic contribution to the shear viscosity. If, in addition,
it is assumed that the number of particles in any cell is Pois-
son distributed at each time step, with an average numberM
of particles per cell, and average over the number of particles
in a cell [10], one finds

nkin
2D = kBTto

n=0

`

8GCsntd =
kBTt

2
F M

sM − 1 +e−Mdsin2sad
− 1G ,

s8d

in two dimensions, where

GCsntd ; ks̄xy
kins0ds̄xy

kinsntdlC/NskBTd2

= f1 – 2 sin2sadsM − 1 +e−Md/Mgn. s9d

The index C indicates that molecular chaos was assumed
when performing the averages. The corresponding result for
model A in three dimensions is

nkin
3D =

kBTt

2
F 5M

sM − 1 +e−Mdf2 − cossad − coss2adg
− 1G

s10d

(see also Refs.[11,12] ).
Equations(8) and (10) are the same results one would

obtain in the Chapman-Enskog approximation[1]. For a
small mean free path, however, there are significant contri-
butions tonkin that are neglected in this approximation. They
arise from correlations between particles which are in the
same(shifted) cell at more than one time step. Figure 1 con-
tains a plot of theGsntd;ks̄xy

kins0ds̄xy
kinsntdl /NskBTd2, in two

dimensions fora=90°. The bullets are the resultGCsntd
given in (9), and the open squares are simulation data for
l /a=1; the agreement shows that for this value of the mean
free path, Eq.(8) provides an excellent approximation for
nkin. On the other hand, data obtained forl /a=0.01 s+d ex-
hibit much larger correlations forntù2. Figure 2 contains a
plot of the relative difference,dGs2td=Gs2td−GCs2td as a
function of the mean free path. While it is rather difficult to
evaluate these corrections analytically for generall, we have
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calculateddGs2td in the l→0 limit. The results of this cal-
culation, which are shown in Fig. 2, are in excellent agree-
ment with the numerical results.

There are corrections of this type at smalll /a for all the
transport coefficients, and it is important to note that they
provide a particularly large contribution to the bare self-
diffusion coefficient[6,9,12]. The effect of these correlations
on the value of the viscosity are less significant and only
visible at intermediate mean free path, since they vanish for
large l and are small compared to the dominant collisional
contribution for l!a. For l /a=0.4, the correlations atn
=2 make an additional contribution of approximately 12% to
the total viscosity.

The rotational contribution to the viscosity is easy to
evaluate, since, as can be seen from Eq.(7), only stress cor-
relation functions at equal time and for a time lag of one time
step are required. Another simplifying feature is that because
of momentum conservation, the diagonal(from i = j) and off-
diagonal (from i Þ j) contributions tonrot in (7) obey the
relation nrot

diagonal=−2nrot
of f-diagonal. Using this result and rela-

tion (5), and averaging over the number of particles in a cell,
one obtains[12]

nrot =
a2

6dt
SM − 1 +e−M

M
Df1 − cossadg s11d

for all the collision models we considered[the standard
model ind=2 and both models A and B in three dimensions
(3D) [11]]. Equation(11) agrees with the result of Kikuchiet
al. [10] obtained using a different nonequilibrium approach
in shear flow, but deviates slightly for smallM from the
result given in Refs.[9,11]. Result (11) is compared with
simulation data for the rotational contributation to the viscos-
ity in Fig. 3(a).

The GK relation for the thermal diffusivity,DT, derived in
Refs.[8,9] can be resummed in a similar fashion. In particu-
lar, it can then be shown thatDT=DT,kin+DT,rot. DT,kin was
calculated in two dimensions(2D) in Ref. [9] and in 3D in
[11], neglecting fluctuations in the number of particles in a
cell. As for the viscosity, it is straightforard to include par-
ticle number fluctuations by averaging the contributions to
the heat-flux correlation functions over the number of par-
ticles in a cell; the resulting expression will be given else-
where[12]. The relationDT,rot

diagonal=−2DT,rot
of f-diagonal, which fol-

lows from energy conservation, can be used to show that the
rotational contribution to the thermal diffusivity is

FIG. 1. Gsntdas a function of time step forl /a=0.01 s+d and
l /a=1.0 shd. The bulletss•d are the resultGCsntd given in Eq.(9).
Averages were taken over 100 000 iterations and five different ran-
dom number seeds. Parameters:L /a=64, M =5, anda=90°.

FIG. 2. dGs2td as a function ofl /a for rotation anglesa=60°

s+d, 90° shd, and 120° scd. The asteriskss* d are the theoretical
values forl /a=0. Time averages over 400 000 iterations for five
different random number seeds were used to obtain the data. Param-
eters:L /a=64 andM =5.

FIG. 3. Simulation results for the normalized rotational contri-
bution to (a) the kinematic viscosity,nrott /a2, and (b) the thermal
diffusivity, DT,rott /a2, as a function of the collision anglea. The
circless•d are the diagonal, the squaressjd the offdiagonal, and the
trianglessmd the total contribution to the rotational viscosity and
thermal diffusivity. The solid lines are the theoretical predictions.
The data were obtained by time averaging over 360 000 iterations.
Parameters:L /a=16, l /a=0.1, M =3, andt=1.
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DT,rot =
a2

3sd + 2dt
1

MF1 − e−MS1 +E
0

M ex − 1

x
dxDG

3f1 − cossadg

<
a2

3sd + 2dt
1

M
S1 −

1

M
Df1 − cossadg s12d

to leading order for largeM. Note that in contrast to the
viscosity, the rotational contribution to the thermal diffusiv-
ity is Os1/Md, so that the corrections toDT at small l /a
arising from correlated collisons are more important than for
the viscosity. Simulation results forDT,rot are compared with
Eq. (12) in Fig. 3(b).

It is now clear that the random shift procedure introduced
in Refs.[7,8] not only restores Galilean invariance, but also
enables an exact evaluation of the collisional contribution to
the transport coefficients and clarifies several aspects of the

underlying algorithm. In addition, the current approach jus-
tifies in detail several assumptions used in the nonequilib-
rium calculation of Kikuchiet al. [10], which led them to the
same, correct results for the shear viscosity derived here us-
ing GK relations. An advantage of the current approach is
that it can be used to analyze the transport coefficients of the
longitudinal modes, namely the bulk viscosity and thermal
diffusivity, which are hard to calculate in a nonequilibrium
approach[13]. It can also be used to show that the bulk
viscosity is equal to zero[9,12].
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